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Galilean relativistic wave equations 
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t Departamento de Fisica Tehica, Facultad de Ciencias, Universidad de Zaragoza, Spain 
$ Departamento de Fisica Tebrica, Facultad de Ciencias, Universidad de Valladolid, Spain 

Received 14 May 1981 

Abstract. The locally operating realisations of the Galilei group are studied. Mvy- 
Leblond’s equation for spin-one-half Galilei relativistic massive systems is rederived by 
making use of group theoretical methods and a generalisation to spin one is proposed. 
Finally, the relation to the corresponding PoincarC relativistic equations is analysed. 

1. Introduction 

Several years ago LCvy-Leblond (1974) pointed out the convenience of a remodelling 
process in the logical (vs mathematical) structure of the foundations of the quantum 
theory. In particular, for several reasons, both epistemological and practical, he 
proposed that the ‘correspondence principle’, whose role in the historical development 
of the quantum theory has been very important, ought to be replaced by a ‘symmetry 
principle’ as a guide for building up the specific structure of such theory. We should like 
this paper to be one more step in this recasting process. 

In a now classical paper, Wigner (1939) has shown that with the hypothesis of 
invariance under a group G of space-time transformations (kinematic group), any 
quantum system is described by means of the representation space of a (semi-unitary) 
projective representation of the group G. The free wave equation is but a method of 
specifying the corresponding representation, that is to say, the set of all solutions of the 
wave equation for a free system spans a representation space for the group G. If the 
(multiplier) representation is irreducible the quantum system is called elementary. We 
assume, with Gvy-Leblond (1967), that the system under consideration has no 
additional structure besides the one associated to the representation, taking this fact as 
a definition of ‘elementarity’. 

More recently, Hoogland (1967a, b, 1977) has shown that the classification of 
elementary systems according to the equivalence classes of (semi-unitary) projective 
representations of the kinematic group G cannot be considered as fully satisfactory. 
Only some realisations of G, called by him ‘locally operating realisations’ (LOR), must 
be considered as physically relevant. The important concept of equivalence of locally 
operating realisations is that of ‘local equivalence’, a refinement of the usual projective 
equivalence. From these ideas some light is shed on the appearance of the homo- 
geneous group instead of the little group of Wigner’s canonical theory for the charac- 
terisation of irreducible locally operating realisations. 

In 4 2  we explain briefly the concept of LOR and give some of the results of 
Hoogland, but they are presented in a slightly different form. We specialise to the case 
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344 J F Carin‘ena and M Santander 

of the Galilei group and develop a method for comparing these realisations to the 
standard induced representations of the projective covering group d of G (Carifiena 
and Santander 1975), by means of a Fourier transformation. 

Section 3 is devoted to the rederivation of the Galilean relativistic spin-i massive 
wave equation proposed by LCvy-Leblond (1967). In this rederivation no ‘linearising’ 
process similar to the one used by Dirac is necessary. It may be worth remarking that we 
start with the locally operating realisation under which the equation we are looking for 
must be invariant, and then the explicit form of the inner product arises in a natural way 
as translated from the standard realisation. Two steps are to be made: a doubling of 
components in order to obtain a simpler expression for the inner product and a change 
of variables which permit us to decouple the components in two sets, each satisfying 
identical equations. 

This method can be generalised in an easy way as is done in § 4 for the spin-one 
case. A comparison with the corresponding PoincarC relativistic equation is given 
in 9 5 .  

We must remark that this rederivation is not to be confused with the more 
sophisticated one due to Niederer and O’Raifeartaigh (1977) where the equation is 
obtained from two representations of the homogeneous group and by making use of a 
projection operator. Nevertheless, the equations obtained by the method proposed 
here coincide with some of those derived by his methods. 

2. Locally operating realisations of the Galilei group 

We recall briefly the main concepts and ideas about LOR of kinematic symmetry groups. 
Let G be a kinematic symmetry group (a connected Lie group) acting transitively on 

the space-time X ,  x 4 gx. As is well known X can be identified with the homogeneous 
space G/K, K being the isotopy group of any fixed point xo E X. Let h : X -* G be a Borel 
normalised section, i.e. a transformation h, for each x E X  such that hxxO = x,  with 
h,,=e. Once such a section h is given, every g E G  has a unique factorisation 

Following Hoogland (1976a, b) we use the term ‘locally operating realisations’ of G 
to mean the multiplier representations of G which operate locally in a space of 
multicomponent wavefunctions q: X -* V, V being a (finite-dimensional) complex 
linear space, according to 

g = hBxo.  y(g) ,  where y k )  E K. 

where A(g, x )  is a matrix called the gauge matrix of %. The canonical topology in V 
induces a topology in the space of functions and we implicitly assume that the associated 
projective representation is continuous. This does not mean that A : G x X + GL(n, C) 
itself is continuous, but’at least A is a Borel function. 

The natural concept of equivalence for LOR is not pseudo-equivalence of multiplier 
representations but the so-called local equivalence: two LOR of G, 42 and 4u’ both 
operating on the same space of wavefunctions are called locally equivalent if there is a 
(Borel) function A : G -+ U( 1) and a linear transformation T in the space of wavefunc- 
tions such that 
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where S ( x )  is a (Borel) non-singular matrix, i.e. T acts locally and 

(ii) W ( g )  = A ( g ) m ( g ) T - ’ .  

The local equivalence of LOR translates itself to some kind of equivalence between 
gauge matrices: two sets of gauge matrices are called equivalent if there exist (Borel) 
functions A : G + U( 1) and S: X + GL(n, C) such that 

A ’ ( g ,  x )  = A ( g ) S ( g x ) A ( g ,  x ) s - ’ ( x ) .  

Now we specialise G to be the Galilei group and X the corresponding Newtonian 
space-time. We adopt here the active viewpoint (see e.g. Fonda and Ghirardi 1970) 
according to which the element g = (b, a, U, R) of c$ is the transformation of X given by 

x L (;) -* gx L (;,) = ( Rx + u t +  a) 
t + b  

(x, t) and (XI, t’) being respectively the coordinates in some fixed inertial frame of an 
event and its image under g. We remark that this action is transitive. 

The specific semi-direct structure of the homogeneous Galilei group greatly 
simplifies the results about local equivalence classes of LOR of 9. As usual, we take 

(2.3) 
and then it can be shown that any gauge matrix is equivalent to a gauge matrix of the 
form 

xo = (090) h, = 0, x, 0,l) A g )  = (O,O, U, R) = (0,  R) 

A ( g ,  x )  = w ( g ,  h x ) W y ( g ) )  

where w is a factor system of c$ and 9 is a multiplier matrix representation of K with 
factor system o IKxK. Conversely, if w and 9 are given as above, then A ( g ,  x )  defined by 
the former expression is a gauge matrix. The interplay between w and 9 in order to give 
equivalent gauge matrices lies at the heart of the concept of super-equivalence of group 
exponents, but we do not enter into this question here. 

As is known any factor system of 3 is equivalent to some standard wA,l, A E Et, 1 E 

(1, -l}, given by (Brennich 1970, Carifiena and Santander 1975) 

wA,l(g‘,  g )  = exp[iA($d2b +U’ R’a)]&(R’, R). 

[%(g)*](x’t ’ )  = exp[iA($u2t + U * Rx)]Ed(u, R)Y(x, t) 

(2.4) 

The most general (up to local equivalence) multiplier LOR of c$ is 

(2.5) 

whose ingredients are (i) the factor system of c$ given by (2.4), (ii) the matrix multiplier 
representation 9 of K with factor system t ( u ’ ,  R’; U, R) = &(I?’, R). 

For practical purposes we notice that because of the structure of the factor system of 
9, this representation can always be obtained from a linear representation of the 
universal covering group K” of K but this fact follows from the formalism and has not to 
be assumed in advance. 

The preceding considerations explain why we can restrict our attention to those LOR 
of G given by (2.5). However, we are interested in the unitary irreducible represen- 
tations and then in order to achieve this, the following three steps are to be made. 

(i) We must pick out some subspace 9 of functions W X -* V in such a way that it is 
irreducible under the action (2.5). 

(ii) Simultaneously we must choose the representation 9 of K. 
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(iii) We must endow the representation space with an inner product structure in 

The two first steps are interrelated because V is the representation space of 9. 
We shall make these steps with the help of the Fourier transformation which enables 

us to compare the LOR under consideration to the standard theory of induced represen- 
tations (see e.g. Mackey 1958, Simms 1968) of (8. 

The space-time has been identified to T4 (space-time translations group) by means 
of the choice of the point xo and the section h. Let @(k) be the Fourier transform of 

such a way that the LOR (2.5) is unitary. 

W X ) ,  

(2.6) 

where k = (p, E). Then, the transformation law of @ ( k )  under the action of 9 is 

[%(d@I(p, E) = exp[i(Eb -pa)lWu, W W ‘ ,  E’) (2.7) 

where 

p ’ = R - ’ ( p - h ~ )  E’ = E + +AU’ - PO. (2.8) 

We remark that for A # 0,2AE - p 2  = 2AE’ -p” ,  and this relation shows a necessary 
condition for irreducibility of the corresponding LOR, the vanishing of the function 
@ ( p ,  E) when 2AE - p 2  is not equal to an arbitrary but fixed real number, say p. 
Furthermore, the only physically interesting case is A # 0 as we are going to see shortly. 

Now we should like to compare the preceding realisation with the canonical 
realisations of (8, whose theory is developed e.g. in Gvy-Leblond (1963, 1972) or 
Cariiiena and Santander (1 975). We recall that all irreducible multiplier represen- 
tations (up to projective equivalence) of (8 can be obtained from the irreducible 
representations (up to pseudo-equivalence) of an eleven-parameter group, called the 
projective covering group $ of (8 (or extended Galilei group). In particular, the 
physically relevant irreducible representations of s are the ones labelled by [m, U, SI, 
explicitly given by 

[[m, U, S I ( @ ,  b, 4 0, A)c//I(p) 
= eime exp{i[(p2/2m + U)b  -pu]}D,(A)+(R-’(p - mu)). (2.9) 

The parameters m # 0 and s are to be interpreted as the mass and the spin of the 
elementary system. The case m = 0 corresponding to ‘almost’ linear representations is 
unphysical (Inonu and Wigner 1952, Hamermesh 1960). 

Now we must compare the realisation (2.7) obtained from the original LOR (2.5) 
with that of (2.9): the similarity of the factor systems shows that A has to be identified to 
the mass of the elementary system and p corresponds to the internal energy. No 
restriction is imposed by taking p = 0 because the projective equivalence involved acts 
locally on Y ( x ,  t). Notice, however, that sometimes other choices are more natural: for 
instance p = m when studying ‘non-relativistic’ limits. In this way we also obtain a first 
necessary condition for the irreducibility of the original LOR 

(2mE -p2 )@(p ,  E) = 0 

i a t q ( x ,  t )  = -(v2/2m)Wx, t).  

(2.10) 

which when translated to the LOR gives a (multi-component) Schriidinger equation 
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Let us now define for any function @(p ,  E) a new function 4 ( p ,  E) by means of 

4 ( p ,  E )  = ga(-p/m, W ( p ,  W .  

[U(d4l(p, E )  = exp[i(Eb -pa)l9(0, R)4(p‘ ,  E’). 

(2.11) 

(2.12) 

The associzted realisation of ‘3 (see (2 .8))  is given by 

From (2.5) and (2 .12)  we realise that when we want to describe a spin-s elementary 
system by means of a LOR (2 .5) ,  the restriction of the multiplier representation 9 of K to 
SO(3)  must contain a single D, representation (although possibly repeated) and no 
other representations. This condition narrows the range of possible candidates for the 
representation k, 

3. Galilean wave equations for spin $ 

When we wish to describe a spin-one-half massive elementary system (under Galilean 
relativity) by means of a LOR (2.5) of %, we must start with a multiplier representation of 
K whose restriction to SO(3) is (a multiple of) D1/2. The most obvious choice is D1/2 
itself, which is a representation as a consequence of the semidirect structure of K. It is 
more interesting, however, to take a faithful representation. The lowest dimension of a 
faithful representation is four, and then the requirement 9110(3) = D1/2OD1/2 deter- 
mines 9 (up to equivalence) to be 

(3.1) 

Following the steps which have been previously explained one obtains an irreduci- 
ble LOR of ’3 by means of four-component functions Y satisfying i&Y(x, t) = 
- (V2 /2m)Y(x ,  t )  and transforming under % as follows: 

[%(g)Wj(x’, t ’ )  = exp[im($02t+ U - Rx)]A1/z(u, R)V(x, t ) .  (3.2) 
Now the following question arises: is there an inner product in this representation 

space such that this realisation is unitary? A direct answer is not immediate because of 
the not fully reducible nature of Ab’/’. But a glance to the transformation law (2.12) of 
the associated realisation of ’3 by 4 functions makes it obvious that the 4 functions 
transform unitarily if the inner product is defined as 

(3.3) 

where the shorthand notation d ( p )  = 4 ( p ,  E = p 2 / 2 m )  has been used. (The measure 
d3p is the invariant measure on the paraboloid 2mE - p 2  = 0.) This inner product can 
be translated to the realisations (2.7) and (2.5).  The translation to (2.7) is simple and 
gives (with the same shorthand) 

(@I~@z) = I @ : ( p ) G ( p ) M p )  d3p (3.4) 

where G ( p )  is the matrix 
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The p dependence of this metric matrix makes the expression of the inner product 
by means of the wavefunctions q(x, t )  very complicated. It is convenient to make 
some manipulations before translating the inner product, in order to produce simpler 
expressions. 

For each function Q, one can define a new function 0 by O ( p )  = G ( p ) Q , ( p ) .  The 
eight-component functions & = (0”) support a new realisation of 3. If we write Q, = 
( ( p l ,  (p~), 0 = (el, &), the relations between 0 and Q, are given by 

and the inner product (3.4) has the expression 

J 

Then, in order to obtain this simple expression for the inner product we have 
doubled the number of components. We can now consider the following change of 
variables: 

1 (p’= $2 

XI = ( p 1 -  81 

The new functions will be related by 

(3.9) I [(a p12/2m](p’- a * px’ = o 
-a * pq’ + 2mx’ = 0 I [(a p)2/2m3(p -a ’ p x  = 0 

- U * p Q + 2 m X = O  

and the inner product may be rewritten as 

(3.10) 

If B(p) = (z:,”;), a simple algebraic calculation gives the following transformation law 

[ % ( g ) E ] ( p ) = A ” 2 ( ~ ,  R)H(R-’(p -mu))  (3.1 1) 

and an identical transformation law for E‘. In the calculation we must make use of the 
relation D ~ , ~ ( R ) ~  * W ( D ~ , ~ ( R ) ) - ’  = a 8 RW.  

Then, relations (3.9) and (3.11) clearly show that the linear change (3.8) produces a 
decoupling of components in such a way that the realisation by & appears as a direct sum 
of twice the same realisation by 3 and E’. The irreducibility conditions ( 2 m E -  
pz)Q,p(p, E) = 0 imply of course identical conditions for E and E‘. 

for E 
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So, we have an irreducible realisation of % by means of the functions E(p) = (jpXipP;) 
which satisfy the support condition and the equations (3.9), and which is unitary with 
respect to the inner product given by 

(=:1132) = I cp:(p)rp2(~) d3p. (3.12) 

Now the presence of (a * p ) * = p 2  in the equation ( 3 . 9 ~ )  makes it possible to 
incorporate the irreducibility condition by writing it in the form 

Ecp (P, E )  - U * PX(P, E )  = 0 

-U * P ~ P ,  E )  + 2 m x ( ~ ,  E )  = 0 
(3.13) 

which immediately implies the support conditions for both cp and x. 
Finally, we return to the description by wavefunctions on space-time by means of 

the inverse Fourier transformation. The irreducible, unitary LOR is given in terms of the 
wavefunctions Y ( x ,  t) = (T::: t!) satisfying the equations 

i&q(x, t )+i(a*V)x(x,  t ) = O  

i ( o  * V)cp(x, t )  + 2mx(x, t )  = 0 
(3.14) 

and transforming under % as follows: 

[%(g)Y](x’, t’) = exp[im(iu2t+ U Rx)]A1/2(u, R)Y(x, t ) .  

The inner product making unitary this LOR is 

(*111l*d = cp:(x, t)cp~(x, t )  d3x 

which is positive definite for solutions of the wave equation (3.14). 
The wave equations (3.13) and (3.14) are just the equations first obtained by 

LCvy-Leblond (1967) by means of the heuristic idea used by Dirac in the derivation of 
his equation. Notice that the equations (3.14) differ from the original of LCvy-Leblond 
through the sign in front of a V which can be absorbed by a redefinition of x and by a 
change of to another equivalent representation, namely, that obtained from A”* by 
a change of sign in front of a * v. 

We remark particularly the natural appearance of the inner product as translated 
from the (b realisation, as well as the procedure of obtaining the equation starting from 
the representation All2 of the homogeneous group which makes it Galilean invariant. 

4. Galilean wave equation for spin one 

The preceding method can be easily generalised in order to obtain a wave equation 
describing spin-one massive elementary systems. 

We start from the (linear) representation of K given by 

where S are the generators of the representation D I  of SO(3). To obtain the 
corresponding LOR of 3 one must consider the linear space of six-component functions 
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9 ( x ,  t ) ,  transforming under % by 

[%(g)q](x', t ' )  = exp[im($u2t + U * Rr) ]A' (u ,  R)W(x,  t )  

i a,*(x, t )  = - - (v2/2m)~(x,  t ) .  

(4.2) 

and satisfying the multicomponent Schrodinger wave equation 

(4.3) 

This realisation is unitary if a convenient inner product is defined. So, we introduce 
# (p, E) = A1(-p/m, I)@( p ,  E) where @( p ,  E) is, as before, the Fourier transform of 
T(x, t). These functions transform under % by 

(4.4) [%(g)4l(p, E )  = exp[i(Eb -P4lA1(0, R)4(p', E')  
(see (2.8) and (2.12)), and the definition (with the usual shorthand) 

makes unitary the representation (4.4). When this inner product is transported to the 
realisation of % by @(p,  E) functions, a matrix G ( p )  arises in the inner product 

Now, if we define O ( p )  = G ( p ) @ ( p ) ,  after the linear change with the same expres- 
sion as (3.8) one obtains a pair of decoupled wave equations in momentum space 

}.  (4.7) 
(S .p)'cp'-m(S * p ) x ' = o  

-m(S*p)cp'+m2X'=O 
(S *p)2cp - m ( S  . p ) x  = 0 

-m(S * p)cp + m2,y = o I 
We remark that the first of each set of equations is a consequence of the second (as it 

already was in the spin-4 case). But there is a difference with respect to the spin-; case: 
the support condition for cp and x cannot be immediately incorporated in (4.7) in a 
reasonable way that makes it unnecessary. Anyway, if we multiply the first equation by 
S * p and use (S p ) 3  = p 2 ( S  * p )  we obtain 

2E(S .p )cp(p ,  E ) - @  ' p ) z x ( p ,  E )  = 0 

-(S - p)cp(p, E )  + m x ( p ,  E )  = 0 (4.8) 

equations which automatically imply the support condition for x but only the weaker 
condition for cp, (2mE - p z ) ( S  * p)cp = 0. Thus, the condition (2mE -p2)cp = 0 must be 
added to the system (4.8). Nevertheless, the form (4.8) allows for an easy comparison to 
the corresponding spin-one wave equation as we shall see in the next section. 

The transformation law of the wavefunctions E = (T) is easily found to be 

[%(g)X](p) = A1(u, R ) E ( R - ' ( p  - m u ) )  (4.9) 

which is unitary with respect to the inner product 

The corresponding LOR by wavefunctions on the space-time is obtained by means of 
the inverse Fourier transformation. 
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We remark that the procedure suggested by Niederer and O'Raifeartaigh (1977), 
when applied to the representations A', (A')+-' and the projection operator W = (8 y )  
also leads to the wave equation (4.7), although the method is different. 

5. Connection with the P relativistic wave equations 

The relation between the '3 relativistic wave equation for spin-$ and the well known 
Dirac equation has been shown by L6vy-Leblond (1967). Our aim is to show the 
corresponding relation in the spin-one case. Many such spin-one wave equations can be 
found in the physical literature, and therefore it is natural to choose the 9 relativistic 
equation obtained in a similar way in order to compare both equations. 

For the Poincar6 group B = {(a, A)}, we take, as usual, 

xo = (090) 

and furthermore we know that any factor system of 9 is equivalent to some standard 
w ~ ,  1 E (1, -l}, given by 

h, = ((t ,  x), 1) r(a, A) = (0, A) 

wdg', g)= m'? R). 

The results stated in § 2 immediately give the most general (up to equivalence) LOR 

(5.1) 

where 9 is a multiplier matricial representation of the Lorentz group with factor system 
&. That representation can be obtained from a linear representation D of SL(2, C), so 
that (5.1) is equivalent to the more familiar form 

[%(U,  A)'P](Ax + U )  =D(A*)'P(x). (5 .2 )  

If @ ( p )  is the Fourier transform of Y ( x ) ,  the support condition ( p z -  m 2 ) @ ( p )  = 0 
appears as a necessary condition in order to obtain an irreducible LOR corresponding to 
massive elementary 9 relativistic systems. The restriction to positive energy, given by 
e( Po)@( p) = 0 leads to a dispersion relation (Boya 1970) in Y ( x ) ,  but this restriction will 
not be considered below. 

If $ = (0, m) is a selected point on the orbit a,, take L ( p )  (on a,) as the pure 
Lorentz transformation mapping $ on the point p 

of P, as 

[%(a,  A)'P](Ax + a )  = 9(A)Y(x) 

A ~ ( ~ ) = [ ~ ( p O + m ) ] - " * [ ( p ~ + m ) + a  ' p ]  

and define 4 ( p )  = 9 [ L - ' ( p ) ] @ ( p ) ;  then the 4 functions transform under 9 as follows: 

[%(a,  A)41(p) = e-ipaQ(p, A)4(A- 'p )  

where Q ( p ,  A) = ka[L-'(p)AL(A-'p)]. If D is an irreducible representation Dj,j ,  of 
SL(2, C) (with both j and j '  non-zero), the restriction to SU(2) is a direct sum of different 
representations Di of SU(2), so that additional restrictive conditions are necessary to 
eliminate the superfluous wrong spins. This does not occur if the representations D,,o or 
Doss are chosen (Pursey 1965). 

The connection with the Wigner canonical realisation enables us to introduce an 
inner product in such a way that the realisation is unitary. This inner product is in our 
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case 

A simpler inner product is obtained following the same steps than in the Galilean 
case. We make a doubling of components according to 

c p ( P )  = @ ( P I  X ( P )  = W - ’ ( P ) l @ ( P ) .  

( P O  - p)cp = mx ( p O + a  P ) X  = mcp 

In particular, if s = i, the connection equations read 

with x, cp being covariant objects transforming under D4.o and Do,+ respectively. In the 
non-relativistic limit ( p n  = m +E,,, 1 p l / m  << 1) the upper and lower components coin- 
cide. The linear changes cp’ = 2 - 1 ’ 2 ( ~  +x), x’ = 2-”’(cp -x) leads to the usual form of 
the Dirac equation, whose non-relativistic limit is just the equation proposed by 
LCvy-Leblond. 

The case s = 1 gives 

for the connection equations with cp and x now transforming under D l , ~  and Dn,i. These 
equations are the ones proposed by Sankaranayanan and Good (1963, but the 
derivation of these equations by them uses other methods. The former wave equations 
can be written in the form 

Wi,oeDn.iW-’(p)* = P* 
where p=(?  A). In terms of cp‘=2-’’’(cp+x) and ~ ’ = 2 ” ’ ( c p - - x )  the spin-one 
equations read 

( S  * p ) 2 c p ’ - p o ( s  * p)x’ = 0 

p O ( S  * p)cp’ - [m’+ (S  p)’]x’  = 0 
( 5 . 5 )  

whose non-relativistic limit gives in a simple way the spin-one ‘non-relativistic’ equa- 
tions proposed in § 4. 
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